Project description
Cognitive Systems and Robotics
Richness of biological motor behavior in robotic systems
The motor skills of today’s robots still must be qualified as poor. The AMARSi Integrated Project aims at a qualitative jump toward biological richness of robotic motor skills. To achieve this goal, a number of innovative scientific concepts and interdisciplinary research methods will be implemented.
Acquiring rich motor skills will change the role of robots in our human’s society in two fundamental ways. First, such robots will be much more versatile than today, with greatly expanded ranges of practical usages. And second, the naturalness and compliance of their motor behavior will make them blend into the everyday routines of human society, physically safe and psychologically acceptable.
Compared to animals and humans, the motor skills of today's robots still must be qualified as poor. Their behavioural repertoire is typically limited to a narrow set of carefully engineered motor patterns that operate a rigid mechanics and lack situated adaptivity, learnability and dynamical fusion of motor primitives into complex, task-oriented behavioural patterns.The AMARSi Integrated Project aims at a qualitative jump toward biological richness of robotic motor skills, a jump to complex, task-oriented interaction sequences between a robot and a human caretaker.It comprises leading groups from robot engineering, compliant mechanics, morphological computing, human motor research; biomechanics, theoretical biology, machine learning. The project deploys:- coordinated and simultaneous development of compliant mechanics, pervasive learning and dynamical-systems based control architectures, centered on the concept of adaptive modules;- mutually informing research in human motor behavior and robotics;- reliance on compliant mechanics and morphological computing for flexibility, computational and motoric speed, safety and damage-robust learning;- novel learning paradigms (unsupervised, reinforcement and imitation) drawing from principles of reservoir computing;- control architectures based on dynamical (neural) systems throughout, also on the higher cognitive levels.Robotic demonstration with a compliant version of the iCub robot and a compliant quadruped Cheetah platform will manifest progress. The robots will engage in an interaction with a human caretaker at the level of a young child playing open-ended in a cluttered and rough environment. Hardware and software solutions will be made publicly available as open sources.Ultimately the naturalness of such compliant robots will let them blend into the everyday routines of human society, physically safe and psychologically acceptable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences biological sciences biophysics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2009-4
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
33615 Bielefeld
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.