Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Silicon-based Ultra-Compact Cost-Efficient System Design for mm-Wave Sensors

Project description


Design of semiconductor components and electronic based miniaturised systems

SUCCESS targets to develop a technology platform and best-practice design methods to enable the breakthrough of silicon mm-Wave SoCs for high-volume applications. Silicon technology (CMOS, SiGe) has made tremendous progress towards ever higher device cut-off frequencies. Nowadays all RF components for mm-Wave sensing applications up to 120 GHz can be realized in silicon. Silicon technology hence allows integration of mm-Wave circuitry and digital logic for the realization of a true "mm-Wave System-on-Chip" (SoC). The mm-wavelengths allow mm-size antennas which potentially enable miniaturized wireless sensors systems with the size and form factor of an IC package. However several challenges make it difficult to arrive at real low cost. Firstly no true low-cost mm-wave packaging technologies with antenna-integration are available. Furthermore challenges in mm-wave SoC design arise in form of imprecise modelling and device variations. In addition production testing at such high-frequency is extremely expensive, time consuming, and error prone. SUCCESS is an initiative of 9 major industrial and excellent academic organisations. It represents a vertically integrated consortium bringing together semiconductor foundries, design houses, high-frequency packaging experts and industrial end users. The consortium encompasses universities, research institutions, SMEs and large industrial entities.Three topics will be addressed in the project:1. Development of a low-cost System-In-Package (SiP) technology and design platform with integrated antennas2. mm-Wave System-on-Chip (SoC) design methodology3. mm-Wave Built-In Self Test (BIST) and novel SiP test methodologyThe results will be demonstrated in a 122 GHz miniaturized sensor system, realized as surface mount component using plastic package technology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

IHP GMBH - LEIBNIZ INSTITUTE FOR HIGH PERFORMANCE MICROELECTRONICS
EU contribution
€ 922 380,00
Address
IM TECHNOLOGIEPARK 25
15236 Frankfurt Oder
Germany

See on map

Region
Brandenburg Brandenburg Frankfurt (Oder)
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0