Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Modeling, Control and Management of Thermal Effects in Electronic Circuits of the Future

Project description


Design of semiconductor components and electronic based miniaturised systems

Electronic devices of the latest generations, being those integrated circuits or discrete components, are often required to operate in harsh environmental conditions, where the temperature may reach over hundred degrees centigrade. Obviously, this has negative impact on several parameters of the electronic devices, ranging from slow-down and transient, recoverable errors to permanent failures and device breakdown. To complicate the picture, electronic components tend to get warmer on their own as they operate, due to the fact that the power drawn by the devices from the power supply is dissipated by Joule effect.
As time passes, heat and temperature management is becoming increasingly problematic, for reasons ranging from economical to technological. Packages that are able to sustain high temperatures are very expensive, and so are heat-sinks and cooling systems. In addition, high operating temperatures tend to cause malfunctioning of circuits and components, thus impacting the reliability of the electronic products which incorporate such devices.
The development of new, thermal-aware design paradigms can no longer be postponed if the goal is to enable designers to fully exploit the electronic technologies of the future, being those CMOS or alternative to CMOS.
The thermal problem has several facets, thus it needs to be addressed in a comprehensive manner. The THERMINATOR projects will address the following major challenges: 1) To devise innovative thermal models usable at different levels of abstraction, and to interface/integrate them into existing simulation and design frameworks. 2) To develop new, thermal-aware design solutions, customized for the different technologies and application domains of interest. 3) To enhance existing EDA solutions by means of thermal-aware add-on tools that will enable designers to address temperature issues during their daily work and with their usual design flows.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

STMICROELECTRONICS SRL
EU contribution
€ 781 482,00
Address
VIA C.OLIVETTI 2
20864 Agrate Brianza
Italy

See on map

Region
Nord-Ovest Lombardia Monza e della Brianza
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (20)

My booklet 0 0