Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Terahertz Optoelectronics - from the Science of Cascades to Applications

Objective

Over the last 10 years, research in the terahertz (THz) frequency region of the electromagnetic spectrum has grown dramatically. The most significant development has been the demonstration of the first THz frequency quantum cascade laser (QCL) in 2002 by my EC FP-V consortium, WANTED. These advances have been accompanied by an equally important industrial applications-pull, with exploitation envisaged in the pharmaceutical and security sectors, for medical imaging and atmospheric sensing, and for high frequency electronics and communications. Yet, the enormous potential of the THz range has still to be unlocked, principally as there remains a lack of versatile, compact THz systems. My vision here is to address this, creating a step-change in the exploitation of THz technology. I will develop the patterning of periodic and aperiodic grating structures both lithographically, and for the first time, electronically, to engineer the photonic properties of THz QCLs. I will demonstrate the use of surface acoustic waves to modulate QCLs piezoelectrically, creating dynamically tunable sources. A continuous wave system-on-a-chip based on a QCL source, waveguide and integrated solid state detectors will be developed, together with an on-chip continuous-wave THz interferometer, and proven in the study of low-dimensional, nanostructured systems. I will develop a compact fibre-coupled broadband THz system, based on 1.55µm fs-laser excitation of photoconductive antennae. Investigations into the fundamental science underlying THz QCLs will include magnetic field gain measurements of THz QCLs to probe the role of non-Markovian transport in superlattice optoelectronic structures. This programme, comprising the symbiotic development of THz engineering and science, will be unique internationally and will open new opportunities and directions in the study and exploitation of THz frequency electronics and photonics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITY OF LEEDS
EU contribution
€ 2 491 989,00
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0