Objective
This project focuses on the development of high-reliability low-contact force DC-contact, i.e. metal-to-metal contact RF-NEMS (Radio Frequency Nanoelectromechanical System) switches, which are the main building blocks of key enabling component of the next-generation cognitive wireless communications systems, i.e. the interface between the transceiver and the free space; namely NEMS-integrated multifunctional reconfigurable antenna (MRA). An MRA combines multiple functions into a single antenna with the capability of dynamically altering its radiation, polarization, and frequency characteristics. The reconfigurability in performance properties is achieved by morphing the physical structure of the MRA through DC-contact RF-NEMS switches. The major objective of this project is to significantly improve the reliability of DC-contact RF-NEMS switches with high RF-power handling capabilities. To this end, we will optimize the mechanical switch design using novel architectures, investigate different electric contact metallurgies, employ nanoparticle-based lubricants, and develop new nanofabrication processes optimized for avoiding two primary failure mechanisms: stiction and increased contact resistance. The targeted actuation voltage and the switching speed are less than 10 Volts and faster than 100 nano-seconds, respectively. Hot-switched life cycle tests for various RF-power levels will be performed, with the goal of achieving more than 108 hot-switched cycles at 1-Watt RF-power. The proposed high-reliability NEMS switches, once successfully developed, can be easily integrated into antenna architectures to realize MRAs, thereby resulting a major breakthrough in antenna design and implementation since the invention of legacy antennas by Marconi and Hertz.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradio frequency
- engineering and technologymechanical engineeringtribologylubrication
- engineering and technologynanotechnologynano-processes
- engineering and technologynanotechnologynanoelectromechanical systems
- engineering and technologymaterials engineeringmetallurgy
You need to log in or register to use this function
Call for proposal
FP7-PEOPLE-2009-RG
See other projects for this call
Funding Scheme
MC-IRG - International Re-integration Grants (IRG)Coordinator
06800 Bilkent Ankara
Türkiye