Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Automatic code generation for Graphics Processing Units

Objective

An interesting trend in multi-core processors is the Graphics Processing Units (GPUs). GPUs consist of hundreds of very simple processing units specialized in efficient parallel computations. Until the recent past, GPUs were seen and used exclusively for the computations required in the processing of ray tracing for graphical life-like scenes mostly used in computer games. But recently there is considerable interest in utilizing the GPUs for high performance numerical computation. GPUs come at a substantial cost discount with respect to attainable performance, due to the ``price subsidization'' by the huge and profitable market for computer games on gaming consoles and personal computers, especially when compared to the tiny market of high performance scientific computing. The dependence of high performance on a specific GPU architecture and the short life due to short product cycle, impose a very heavy burden on programmers responsible for code optimization and maintenance since it has to be redone every few months. With this work, we propose a methodology and a system we call ``AutoGPU'' to extend the life cycle of optimized numerical codes on GPUs by 1) defining a high-level explicit parallelism language for programming numerical algorithms in the domain of signal and image processing applications, 2) automating the code generation with the use of a special compiler, code templates and algorithm libraries and 3) automating the tuning of performance critical software components using advanced optimization and searching techniques. Despite the lack of tools, there is an explosion of effort to utilize the GPU architecture for general purpose computing tasks with very promising results. With the availability of program generators and optimizers like AutoGPU, we expect the promise of supercomputing capability on a desktop computer to become closer to reality.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

ARISTOTELIO PANEPISTIMIO THESSALONIKIS
EU contribution
€ 100 000,00
Address
KEDEA BUILDING, TRITIS SEPTEMVRIOU, ARISTOTLE UNIVERSITY CAMPUS
546 36 THESSALONIKI
Greece

See on map

Region
Βόρεια Ελλάδα Κεντρική Μακεδονία Θεσσαλονίκη
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0