Objective
Solid oxide fuel cells (SOFCs) are among the most promising fuel cell systems as they produce electric energy with high efficiency. Moreover, they are quite flexible concerning the use of hydrogen as well as of carbon based fuels, due to their high operation temperatures that allow for direct oxidation or reforming in the anode compartment, due to the catalytic action of the anode at these temperatures. In spite of their significant comparative advantages, especially for stationary applications, SOFCs have not been commercialized yet, due to their production cost as well as to their gradual degradation especially that of the anode electrodes, which results in limited lifetime. The key factors affecting anode degradation in hydrogen fuelled SOFCs are thermal sintering, electrochemical sintering and local oxidation (redox cycling) of the nickel particles. Additional anode degradation factors in SOFCs fed with natural or biogas are carbon deposition and sulfur poisoning. Although research on these issues is intensive, no major technological breakthroughs have been so far with respect to robust operation, sufficient lifetime and competitive cost. As a result, penetration of this quite promising technology to broad markets is not possible yet. The proposed project offers an effective methodology for a holistic approach of the SOFC anode degradation problem, through detailed investigation of the degradation mechanisms under various operating conditions and the prediction of the anode performance, degradation and lifetime on the basis of a robust mathematical model, which takes into account all underlying phenomena. In this respect, the ROBANODE project proposes a novel strategy for understanding degradation phenomena and addresses scientific and technological issues, which shall offer significant impact concerning successful implementation of both hydrogen and gaseous hydrocarbon, fuelled Solid Oxide Fuel Cells.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology environmental engineering energy and fuels fuel cells
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FCH-JU-2008-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
JTI-CP-FCH - Joint Technology Initiatives - Collaborative Project (FCH)
Coordinator
70 013 IRAKLEIO
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.