Objective
Ubiquitin (Ub) is a small modifier that labels proteins in a highly specific manner. Like phosphorylation, modification of proteins by Ub is prevalent in the majority of cellular processes. An increasing number of distinct functions have been assigned to different types of ubiquitin modifications (monoUb and different Lys-linked chains). Moreover, aberrations in the ubiquitin system underlie many disease states, including cancer, inflammatory, immune and metabolic disorders as well as neurodegeneration. The most recently described physiological ubiquitin modification is the linear ubiquitin chain, in which ubiquitin monomers are conjugated via Met-Gly linkages. We have found that linear ubiquitin chains bind specifically to the NEMO adaptor molecule, an event critical for the proper regulation of NF-ºB signaling (Rahighi, 2009). Here we propose to use a multidisciplinary strategy to study the role of linear ubiquitination in the NF-ºB pathway, autophagy, apoptosis and DNA repair and how these changes can impact on disease states such as inflammation and cancer development. Scientific objectives are: " Characterize the components of linear ubiquitination: E3 ligases, specific substrates and domains recognizing linear ubiquitin chains " Elucidate the in vivo role of linear ubiquitination in the regulation of the NF-ºB pathway, apoptosis and DNA repair. " Reveal the molecular basis for the connections between linear ubiquitination and selective autophagy " Identify elements in the linear ubiquitin network as potential drug targets " Generate transgenic mouse models of inflammatory diseases and cancer " Develop system and computational biology approaches to assess the global role of linear ubiquitination in cellular proteome
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesneurobiology
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- medical and health scienceshealth sciencesinflammatory diseases
- natural sciencesbiological sciencesgeneticsDNA
- medical and health sciencesclinical medicineoncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2009-AdG
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
60323 Frankfurt Am Main
Germany