Objective
Hematopoietic stem cell gene therapy has a tremendous potential to treat human disease. Yet, in conjunction with the first successful results in the clinic, severe adverse events linked to the gene transfer protocol were reported. Recently, we provided proof-of-principle of two new powerful strategies to improve the efficacy and safety of gene transfer: 1) regulating transgene expression by exploiting cellular microRNAs; 2) targeting integration at predetermined sites of the genome by forcing homologous recombination with designer Zinc finger nucleases. Here we will investigate the microRNA network regulating hematopoiesis and exploit the new knowledge to develop vectors with stringently controlled expression throughout the hematopoietic lineages. We will develop Zinc finger nuclease-based vectors that insert the transgene with high efficiency and specificity either downstream to its own endogenous promoter or into a safe genomic harbor that allows for robust expression without interference on the neighboring genes. By combining these strategies we will provide radically improved gene transfer platforms. Furthermore, we will exploit these technologies for the generation and genetic correction of induced pluripotent stem cells, providing a potentially unlimited source of patient-derived vector free gene corrected multipotent stem cells for future applications of regenerative medicine. The new gene therapy strategies will be tested in pre-clinical models of leukodystrophies and immunodeficiencies, for which we have extensive experience, and should enter a clinical trial for at least one such disease by the end of the proposed funding period. If successfully validated, the new strategies may eventually broaden the scope of gene therapy in medicine.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciencesmedical biotechnologygenetic engineeringgene therapy
- natural scienceschemical sciencesinorganic chemistrytransition metals
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- natural sciencesbiological sciencesgeneticsgenomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2009-AdG
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
20132 Milano
Italy