Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

A physical basis for wing morphogenesis and planar cell polarity

Objective

During development, physical forces are generated in precise patterns and produce elegant choreography of cell movements that determine tissue shape. The function of many tissues depends not only on their shape, but on the correct alignment of planar cell polarity within the tissue. Remarkably, recent evidence from my lab has suggested that physical forces not only shape the wing, but also align the planar polarity of its constituent cells with the proximal distal wing axis. The wing blade is remodeled at pupal stages by proximal-distal stretching caused by contraction of the wing hinge. Hinge contraction produces precise patterns of oriented cell rearrangements and cell divisions in the wing blade that lengthen it proximo-distally and refine its shape. The polarity of cell rearrangements also re-orients intracellularly polarized complexes of Planar Cell Polarity (PCP) proteins to face the distal side of the wing. This occurs because these complexes turn over very slowly, compared with the rate of cell rearrangement. We will investigate three problems defined by this work. First, how does polarized cell stretching cause epithelial remodeling? The pupal wing is the first in vivo example of this process in a genetically and physically accessible model. Second, what are the genetic, cellular, and physical mechanisms that specify the pattern of cellular flow occuring in the wing blade? Third, what signals orient PCP during early wing development? This previously undescribed early polarity is oriented roughly perpendicular to the final direction, is a critical starting point for the later development of proximal-distal polarity. This work will provide important insight into genetic, cellular and physical mechansisms that shape and polarize tissues.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 1 531 200,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0