Objective
Like all seed plants, the body of the model plant Arabidopsis thaliana consists of two distinct systems, the root and the shoot. The shoot system contains the shoot apical meristem (SAM) harboring a population of plant stem cells. During the vegetative growth phase the population of stem cells in the SAM divides asymmetrically and produces the cells that will eventually form new organs. Leaves are initiated at the periphery of the SAM in a circular fashion. Proper establishment of the ad/abaxial (top/bottom) axis is of great importance because shape and size of the outgrowing leaf blade highly depends on the juxtaposition of ad/abaxial tissue. Several genes have been isolated that are involved in specifying either adaxial or abaxial cell fate. These genes often act as master regulators. As a postdoctoral fellow I have generated transgenic Arabidopsis plants expressing inducible versions of some of these master regulators. Using microarrays, we have identified target genes of these master regulators in Arabidopsis. In order to validate unknown or hypothetical proteins which are targets of these master regulators I am proposing experiments directed to identify evolutionary conserved signaling pathways. Therefore I have established transgenic Cardamine plants, which are closely related to Arabidopsis, expressing these inducible master regulators. Transformation of a more distant plant species, Aquilegia, is currently in progress. Using a combination of microarray and next generation sequencing approaches we aim to identify target genes of these master regulators in Cardamine and Aquilegia plants. The identification of these target genes will allow us to study evolutionary conserved signaling modules as well as to define unique signaling pathways. These investigations will be complemented by protein evolution studies of the master regulators and by analyzing cis-element evolution of the target genes they control. The identification of conserved and unique signaling pathways in a diverse range of species will further our understanding of how the three-dimensional shape of leaves is controlled and modulated at the molecular level.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences medical biotechnology cells technologies stem cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2009-RG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
72074 Tuebingen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.