Objective
Over the past 10 years, it become apparent that Crenarchaeota are not only striving in some extreme environments but that they are ubiquitously present in the aquatic and terrestrial environment including the oceanic water column. In the pelagic realm of the ocean, their relative contribution to the total prokaryotic abundance increases with depth. It has been shown that the mesophilic Marine Crenarchaeota Group I (MCGI) live chemoautotrophically, fixing carbon dioxide as carbon source and using ammonia as an energy source. Based on the abundance of the amoA gene, encoding the ammonia monoxygenase, a key enzyme common to all nitrifiers, it has been deduced that they might be more important nitrifiers than Bacteria. This has never been tested thus far, however. In this proposal, we will investigate the enigma of this MCGI cluster is utilizing ammonia in the deep ocean, where ammonia concentrations are below the detection limit using conventional analytical methods. We will determine the distribution of archaeal and bacterial amoA gene abundance throughout the water column down to abyssopelagic realms in the northern North Atlantic and the tropical Atlantic and distinguish between archaeal and bacterial nitrification and dark CO2 fixation rates. Using three different single-cell approaches in a correlative way, we will specifically focus on the potential shifts in the phylogenetic composition of the MCGI cluster and its autotrophic activity with depth, as ammonia concentrations are probably below the nanomolar level in bathypelagic waters. Taken together, we will determine for the first time, the relative importance of archaeal vs. bacterial nitrification in the ocean. By focusing on two Atlantic sites with contrasting age of deep-water masses and accompanied to that, contrasting deep-water ammonia concentrations, we will be able to investigate the entire range of diversity and metabolic adaptation in Marine Crenarchaeota Group I.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences ecology
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2009-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.