Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Solid-state Quantum Optical Devices

Objective

"Quantum Dots in Microcavities offer a unique laboratory to investigate quantum physics. The state of the art has recently achieved the so-called ""strong coupling"" where coherent quantum interactions dominate the system dynamics. Nonlinear effects of a quantum character have been shown under coherent excitation (e.g. photon blockade). An appealing framework is incoherent excitation, where the device undergoes its intrinsic dynamics in a steady state. In this case, many issues remain unresolved. One feature of full-field quantization predicted by the Jaynes-Cummings model, that describes the quantum coupling between a two-level system and a cavity, is still missing from quantum dots: the Jaynes-Cumming ladder splitting that scales like the square root of the number of photons. Such a splitting has been identified in other implementations, like atoms or superconducting qubits. In the case of semiconductors, however, puzzling features have been reported instead, like a spectral triplet. It was recently shown by the applicant that incoherent excitation brings specificities of its own in the description of light-matter interactions. This proposal aims at investigating the strong-coupling with quantum dots in microcavities in the light of this theoretical description, articulating the research in a joint theoretical/experimental collaboration between the applicant and the host organization, one of the first worldwide to achieve strong coupling in an electrically tunable photonic crystal. This opens new possibilities for exploring clean systems open to a fine external control. Beyond evidencing Jaynes-Cumming nonlinearities, this proposal will investigate spin (polarization) and Coulomb interactions (exciton complexes, biexcitons, etc.) in this nonlinear quantum context. At the climax of this work lie on-chip quantum device, such as single-photon sources or entangled-photons pair emitters, operating in the steady state of a continuous (e.g. electrical) excitation."

Call for proposal

FP7-PEOPLE-2009-IEF
See other projects for this call

Coordinator

TECHNISCHE UNIVERSITAET MUENCHEN
EU contribution
€ 168 969,00
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Ulrike Ronchetti (Ms.)
Links
Total cost
No data