Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Linking canopy texture to 3D forest structure and above-ground biomass at regional to continental scales in dense tropical forests

Objective

The assessment and monitoring of tropical forest structure and biomass is becoming an important economic and political stake of this century, notably because of the importance of this ecosystem in the carbon cycle. Recent progress may open the way to the large scale monitoring of tropical forests, thanks to VHR optical remote sensing data. We demonstrated the feasibility of a textural characterization of the canopy at the scale of the Amazon basin. Local tests in French Guiana showed that canopy texture correlated to mean trunk diameter, mean tree height and even biomass. Evidence is indeed emerging, for the existence of general scaling laws in tropical forest (e.g. the WBE metabolic theory), linking forests’ structural (among which crown sizes) and dynamical parameters. This progress calls for an ambitious validation program, (i) to test the large scale stability of scaling laws linking apparent crown sizes (observable on VHR imagery) and other structural and dynamical parameters measurable on the ground; and (ii) to understand how the physical signals interact with forest structure to produce canopy texture. The present mobility project, hosted at UMR AMAP in Montpellier, also involves several research labs in the South of France, in the UK as well as actors from the private sector. For (i), we propose a large scale study across Central Africa of the allometry rules linking canopy texture and forest structure and biomass. Relationships with forest dynamics/productivity will be investigated from existing permanent plots. Canopy total height will be assessed using large footprint space borne LIDAR. For (ii), canopy texture will be obtained from 3D models of forest of known structural properties, either obtained via individual based models or measured via airborne small footprint LIDAR. Interaction with physical signals will be modelled to produce canopy texture images under controlled acquisition conditions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

INSTITUT DE RECHERCHE POUR LE DEVELOPPEMENT
EU contribution
€ 173 162,40
Address
BOULEVARD DE DUNKERQUE 44 CS 90009
13572 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0