Objective
This proposal addresses new scientific challenges in spintrontronics, with the focus on the miniaturization of magnetic sensors. Bismuth crystals and graphene layers show anomalously high Fermi wave length and mean free path. This allows us the observation of electron confinement effects in the length scale of nano-lithography techniques. Both systems can be grown and processed on Si-based substrates, which paves the way for the integration with the existing semiconducting technology. Quantum transport properties are to be studied twofold: by means of intense magnetic fields in nano-patterned devices, and by means of scanning tunnelling microscopy (STM) and spectroscopy (STS) at the surface level. In Bi epitaxial films and graphene flakes, Landau quantization grants access to the topology of the Fermi surface through magnetotransport measurements. The exceptional high-mobility of Bi and graphene gives rise to giant Hall and magnetoresistance effects (> 300,000 %), strongly influenced by structural parameters. Another consequence is the large spin-difussion length, which enables the transport of spin-polarized currents through large distances. Furthermore, the spin-split surface state of Bi crystals and graphene in contact with magnetic electrodes opens up the possibility of polarizing magnetically the medium and injecting spin-polarized currents. The purpose of STM studies here is to assess the influence of structural details at the atomic level on the macroscopic magnetotransport properties of Bi and graphene. STM in combination with pulsed field experiments will be used to investigate the loss of the 2-dimensional character of the electric transport as a function of the sample thickness. Both research lines are very appealing because of the enormous potential for practical device applications and the underlying Physics behind them.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences mathematics pure mathematics topology
- natural sciences chemical sciences inorganic chemistry post-transition metals
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2009-RG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
50009 ZARAGOZA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.