Project description
Photonics
SPADnet aims to develop a new generation of smart, CMOS-based large area networked image sensors for photon-starved biomedical applications, build ring-assembly modules for Positron Emission Tomography (PET) imaging, and carry out performance tests in a PET system evaluation testbed.While suited to applications offering repetitive measurement techniques, existing sensors are not well adapted to single-shot, rare events often occurring in diagnostic tools based on specific radiation detection, PET, SPECT, gamma cameras, and other minimally-invasive / point of care tools. In addition, the relatively small field-of-view of existing sensors is a limiting factor.SPADnet's prime objective is to develop a scalable photonic component for large format, rare-event imaging. The core of the component will be a SPAD array implemented in CMOS. Large formats will be achieved by tessellating several tens of dies in abutment style using innovative packaging techniques based on through silicon vias (TSVs). The ability to stamp the time and position of each photon impingement in a burst event offers a second key advance. The concept of spatial oversampling is introduced, where a single measurement is partitioned into a myriad of sub-measurements, occurring simultaneously. The difference is that in space oversampling many SPADs will detect the same event independently, thus reducing the dead time on average by the number of detectors involved.The decomposition of the large format imager to a network of independent arrays is key to managing massive data streams. In conventional PMTs or SiPMs, the sensitive device produces a stream of analog electrical pulses. The photonic component proposed in this project on the contrary generates streams of precomputed digital data.The current state-of-the-art on inter-chip data exchange will be the basis for efficient data communication, in a true network communication style. Data packets will be routed in the network and will be handled on-demand. For example coincidence mapping engines can be used in this context as snoopers on the data bus, thus considerably simplifying systems such as PET.
SPADnet aims to develop a new generation of smart, CMOS-based large area networked image sensors for photon-starved biomedical applications, build ring-assembly modules for Positron Emission Tomography (PET) imaging, and carry out performance tests in a PET system evaluation testbed.
While suited to applications offering repetitive measurement techniques, existing sensors are not well adapted to single-shot, rare events often occurring in diagnostic tools based on specific radiation detection, PET, SPECT, gamma cameras, and other minimally-invasive / point of care tools. In addition, the relatively small field-of-view of existing sensors is a limiting factor.
SPADnet's prime objective is to develop a scalable photonic component for large format, rare-event imaging. The core of the component will be a SPAD array implemented in CMOS. Large formats will be achieved by tessellating several tens of dies in abutment style using innovative packaging techniques based on through silicon vias (TSVs).
The ability to stamp the time and position of each photon impingement in a burst event offers a second key advance. The concept of spatial oversampling is introduced, where a single measurement is partitioned into a myriad of sub-measurements, occurring simultaneously. The difference is that in space oversampling many SPADs will detect the same event independently, thus reducing the dead time on average by the number of detectors involved.
The decomposition of the large format imager to a network of independent arrays is key to managing massive data streams. In conventional PMTs or SiPMs, the sensitive device produces a stream of analog electrical pulses. The photonic component proposed in this project on the contrary generates streams of precomputed digital data.
The current state-of-the-art on inter-chip data exchange will be the basis for efficient data communication, in a true network communication style. Data packets will be routed in the network and will be handled on-demand. For example coincidence mapping engines can be used in this context as snoopers on the data bus, thus considerably simplifying systems such as PET.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences computer and information sciences data science data exchange
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2009-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1015 Lausanne
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.