Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Role of Microtubule Polarity and Polarized Membrane Traffic in Directed Cell Migration

Objective

The ability of cells to polarize is crucial for development, wound healing, and neurotransmission. As many cellular polarity factors play central roles in disease (e.g. cancer, neurological dysfunction) understanding the molecular basis of cell polarity is of great importance to the biomedical sciences. One central aspect of cell polarity involves the regulation of the cytoskeleton and membrane-trafficking machinery, leading to the delivery of specific proteins and lipids to distinct cellular subdomains. This polarized membrane traffic seems important for cells that exhibit local cell growth, including migrating cells. Using advanced imaging approaches I showed that migrating cells preferentially deliver their secretory vesicles towards the leading edge (i.e. the front), and that this polarized delivery depends on intact microtubules (MTs). But how MTs and polarized membrane traffic contribute to cell migration remains unclear. Recent work on wound-edge migrating cells has identified factors that lead to distinct MT polarity phenotypes, i.e. MT stabilization and centrosome orientation, both of which could contribute to bias membrane traffic towards the front of the cell by either forming specialized vesicular tracks or by positioning secretory organelles in front of the nucleus. I will use interdisciplinary cell biological and state-of-the-art imaging and screening approaches to 1) investigate the mechanism of how MT polarity and polarized membrane traffic contribute to directed migration using known factors, 2) identify membrane trafficking factors that play a role in directed migration using automated image-based screening and 3) investigate the role of common traffic/migration factors in polarized membrane traffic and MT polarity. Further, I will implement ‘super-resolution’ microscopy to image the nanoscale localization of polarity factors in greater detail. These studies are aimed toward a more comprehensive understanding of cell polarity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

FREIE UNIVERSITAET BERLIN
EU contribution
€ 100,00
Address
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0