Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Fresh volcanic deposits as a sink for atmospheric carbon: A laboratory, field, and modelling approach to quantifying variation in chemical weathering rates

Objective

A timely theme in Earth Sciences is the quantification of chemical weathering and fluxes to the oceans, and their role in defining seawater chemistry and atmospheric CO2 levels. Until recently, most studies have assumed that weathering rates and river fluxes are essentially at a steady state and that present day rates are typical of the past. Where rate changes have occurred, they are largely thought to have been gradual – e.g. in response to mountain uplift. However, recent work has suggested that weathering rates and river fluxes show rapid changes on timescales of ~1000 years; resulting from accelerated weathering of fresh fine-grained glacial deposits exposed during deglaciation. The same is true of new erupted lava and volcanic ash, which weathers much faster when newly erupted. Volcanic islands have already been recognised as important contributors to terrestrial weathering rates and the transport of dissolved elements to the oceans. Volcanism can vary from small, high-frequency eruptions that are part of the climatic 'steady-state'; to large, rare eruptions that either produce widely dispersed ash or great volumes of lava. Several processes allow this newly erupted material to weather quickly in the initial years after deposition. This introduces, in the case of the large eruptions, a new sink for atmospheric carbon dioxide by providing elements necessary for calcite shell formation to the oceans. The subsequent 'biological pump' depletes the ocean in CO2, which in turn reacts with the atmosphere to cool the planet. This process could potentially act as 'tipping point', pushing the Earth's climate from an inter-glacial to a glacial regime. This project seeks to quantify the early, elevated weathering of two types of volcanic rock using a combination of laboratory experiments and field observations. We will then use this data to model the potential impact of this phenomena using a state-of-the-art global climate model.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

HASKOLI ISLANDS
EU contribution
€ 204 568,00
Address
SAEMUNDARGOTU 2
101 Reykjavik
Iceland

See on map

Region
Ísland Ísland Höfuðborgarsvæði
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0