Objective
This proposal is placed in the area of molecular spintronics, a multidisciplinary area of knowledge in between molecular magnetism, molecular electronics and surface science and deals with the integration of molecular materials in spintronic devices. The weak spin–orbit coupling and hyperfine interactions found in organic materials, along with its ease of processability and tunability, make molecules became serious candidates to substitute traditional metals and inorganic semiconductors or insulators in spintronics devices. This offers the possibility of constructing devices were spin–coherence will be maintained over times hardly conceivable only some years ago. Additionally the use of magnetic molecules in spintronics devices is the expected evolution to shift from molecular electronics area to molecular spintronics field. Through the deposition over surfaces of thin films, their integration into organic molecular tunnel juntions (OMTJs) and the study of the molecule-surface interfaces this project combines chemistry, surface science and spin-transport physics. This proposal will try to go beyond the current state-of-the-art in the field of molecular spintronics by using molecular materials as spin barriers in OTMJs and its ultimate goal is to perform magnetotransport measurements through conveniently nanostructured thin organic layers and molecular materials. Special attention will be paid to the molecule-surface interface, critical to correctly interpret transport measurements. It is divided in two main parts, the first one deals with the use of thin organic barriers, self-assembled monolayer or polymeric thin films, in the preparation of OMTJs (1. THIN FILM MOLECULAR SPINTRONICS) and the second one intend to measure transport properties of a single molecule magnet (SMM) spintronic device. (2. SINGLE-MOLECULE SPINTRONICS). In the nanodevice robust SMM of the Mn4 and polyoxometalate will be separated from the electrode by an organic spacer. During the development
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical scienceselectromagnetism and electronicsspintronicsmolecular spintronics
You need to log in or register to use this function
Topic(s)
Call for proposal
FP7-PEOPLE-2009-IEF
See other projects for this call
Funding Scheme
MC-IEF - Intra-European Fellowships (IEF)Coordinator
75794 Paris
France