Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The functions of mTOR complex subunits Rictor and Raptor in myelination

Objective

Understanding the molecular basis of myelination, and the nature of the cells that achieve myelination, is of fundamental importance for both basic and clinical neuroscience. Detailed insights into these processes are likely to provide the foundation for therapeutic approaches to diseases affecting myelinating cells, like Multiple sclerosis in the central nervous system (CNS) and Peripheral Neuropathies in the peripheral nervous system (PNS). The host lab has shown that integrin-mediated signals derived from the extracellular matrix together with growth factor signaling via tyrosine kinase receptors are critical for the correct development of myelinating cells and their interaction with neurons. Particularly critical signals integrators are ILK (integrin-linked kinase), as well as the small RhoGTPases Rac1 and Cdc42. Complementary lines of research point to a connected critical role of the PI3K/Akt pathway. The two mTOR-containing complexes 1 (mTORC1) and 2 (mTORC2) are major regulators of these signaling pathways. In this project, we will examine the functional role of mTORC1 and mTORC2 in the development of myelinating cells and during remyelination after injury. To achieve these goals we will use conditional floxed alleles in the mouse that target two critical subunits of the mTOR complexes, raptor (mTORC1) and rictor (mTORC2). These mice are already available in the host laboratory. Using well established Cre recombinase expressing mouse strains, we will eliminate rictor and raptor individually and in combination specifically in developing Schwann cells in the PNS, as well as in mature Schwann cells followed by peripheral nerve injury. If time allows, we will perform complementary experiments in the CNS, using oligodendrocyte-specific gene knock out mice. The work will be embedded in ongoing work in the host laboratory examining the functional role of mTORC1 and mTORC2 in neural stem cell lineage decisions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 174 065,20
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0