Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Emission Comb Spectroscopy: Development of novel frequency comb spectroscopy methods based on stimulated Raman scattering

Objective

Coherent control of ultrafast lasers results in well-defined frequency combs revolutionizing many aspects in fundamental and applied science. Most recently, frequency comb technology was used to push the performance of Fourier transform spectroscopy to unprecedented levels. Multi-heterodyne spectroscopy is a rapidly growing research field opening new perspectives in terms of sensitivity, spectral resolution and data acquisition time which has been demonstrated in various experiments on absorption spectroscopy. Here, we propose a novel technique for frequency comb based precision spectroscopy based on stimulated Raman scattering. This approach or emission frequency comb spectroscopy in general has not been addressed so far. We describe two schemes for measuring the Raman response of molecular samples and the corresponding proof-of-principle experiments. Based on the pump probe technique, the consequences of the excitation of rotational transitions in molecular hydrogen will be measured by multi-heterodyning with phase-locked frequency combs. The first technique relies on Raman induced Stokes gain and anti-Stokes loss, respectively, experienced by the probe pulse whereas the second is based on the time dependent measurement of the transient index perturbation. As multi-heterodyne spectroscopy is capable to yield the full complex spectrum, both schemes can be studied with a similar setup. Another goal of this proposal is the design of a tailored fibre based dual frequency comb system to be able to fully exploit the potential of this spectroscopic technique. The advances of our scheme will then be utilized for spatially resolved spectroscopy and microscopy which is particularly useful for biological samples. Broadband measurement allows simultaneous analysis of various transitions. The proposed project constitutes a new direction for nonlinear precision spectroscopy with a huge potential for many branches of science and interdisciplinary research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

STICHTING VU
EU contribution
€ 166 535,20
Address
DE BOELELAAN 1105
1081 HV Amsterdam
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0