Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Quantitative dynamic analysis of homologous chromosome segregation and its coordination with the asymmetric meiotic division in live mouse oocytes

Objective

Cell division is a fundamental biological process: faithful chromosome segregation is important to maintain genome stability. The first meiotic division is a unique type of chromosome segregation for two main reasons. First, it segregates homologous chromosome pairs rather than sister chromatids, as it occurs in mitosis. Second, the chromosomes are segregated only when the meiotic spindle has been positioned at the cortex of the oocyte. This division is extremely asymmetric to preserve the stored nutrients for the early embryo. Errors in segregation of chromosomes during meiotic divisions can result in the generation of aneuploid embryos such as Down syndrome. As in mitosis, chromosome missegregation during meiotic division is prevented by the spindle assembly checkpoint that monitors correct attachment to microtubules until chromosomes are bioriented. However, the spatio-temporal coordination between chromosome segregation and spindle positioning is poorly understood. The aim of my project, in Dr. Ellenberg’s group, is to characterize cellular and molecular mechanisms that coordinate accurate chromosome segregation with spindle relocation. First, I will characterize the functional dynamics of chromosome segregation in coordination with the spindle relocation by real time imaging in live mouse oocytes. Second, I will use these imaging assays to investigate its mechanism by perturbation of candidate gene function as well as interfering with cellular components with small molecule inhibitors. Dr. Ellenberg’s group is part of EMBL, a dynamic and stimulating international institute, which offers great potential for interdisciplinary collaborations and training. In this project, I will be able to use my skills concerning mouse oocytes, and at the same time, acquire new expertise in advanced imaging and computerized image processing. I deem this a unique opportunity to address key questions of mouse oocyte research and to further broaden my career as a scientist.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

EUROPEAN MOLECULAR BIOLOGY LABORATORY
EU contribution
€ 161 161,00
Address
Meyerhofstrasse 1
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0