Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Quantifying Aerobic Methane Oxidation in the Ocean: Calibration and palaeo application of a novel proxy

Objective

Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY OF NEWCASTLE UPON TYNE
EU contribution
€ 1 496 392,00
Address
KINGS GATE
NE1 7RU Newcastle Upon Tyne
United Kingdom

See on map

Region
North East (England) Northumberland and Tyne and Wear Tyneside
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0