Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Spin related phenomena in mesoscopic transport

Objective

The rapid progress of nanotechnology made possible the realization of nano-devices in which the motion of the carriers obeys the laws of quantum mechanics. They offer a unique laboratory for study of fundamental quantum effects, such as entanglement, topological phase and new states of matter arising from many- body correlations. Besides, mesoscopic objects can serve as components of the electronic and optoelectronic devices of new generation. In this perspective the study spin related phenomena is of particular importance as use of the spin degree of freedom opens a way to practical realization of such nanodevices as single electron memory elements, spin transistors, quantum beam splitters and spin filters. Another important topic in the field of mesoscopic transport is connected with many- body correlations, which manifest itself via variety of intriguing physical phenomena. In many of them spin plays a major role. The analysis of an interplay between spin dynamics and mesoscopic many- body correlations is thus an actual task. In a current Multidisciplinary Marie Curie FP7-PEOPLE-IRSES project SPINMET we plan to analyse many body spin related phenomena in various types of mesoscopic structures focusing on following main topics: i) Spin- interference phenomena in non-single connected mesoscopic objects ii) “0.7 anomaly” and related phenomena in 1D ballistic transport iii) New states of quantum spinor 1D liquids. iv) Spin currents and spin accumulation in real mesoscopic structures. The final objective to understand the mechanisms governing mesoscopic spin dynamics and its interplay with many-body correlations and formulation of practical recommendations for their applications in High-Tech industry: silicon spin transistor without ferromagnetic contacts; resistance standard based on the quantum spin Hall effect etc.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IRSES
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRSES - International research staff exchange scheme (IRSES)

Coordinator

HASKOLI ISLANDS
EU contribution
€ 196 200,00
Address
SAEMUNDARGOTU 2
101 Reykjavik
Iceland

See on map

Region
Ísland Ísland Höfuðborgarsvæði
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0