Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Understanding Halogen Bonding in Solution: Investigation of Yet Unexplored Interactions with Applications in Medicinal Chemistry

Objective

Halogen bonding is an electron density donation-based weak interaction that has so far almost exclusively been investigated in computational and crystallographic studies. It shows high similarities to hydrogen bonding; however, its applicability for molecular recognition processes long remained unappreciated and has not been thoroughly explored.

The main goals of this project are (1) to take the major leap from solid state/computational to /solution/ investigations of halogen bonding by developing novel NMR methods, using these (2) perform the first ever systematic physicochemical study of halogen bonding in solutions, and (3) to apply the gained knowledge in structural biology through elucidation of the anaesthetic binding site of native proteins. This in turn is of direct clinical relevance by providing a long-sought understanding of the disease malignant hyperthermia.

Model compounds will be prepared using solution-phase and solid-supported organic synthesis; NMR methods will be developed for physicochemical studies of molecular recognition processes and applied in structural biology through the study of the interaction of anaesthetics with proteins involved in cellular calcium regulation.

Using a peptidomimetic model system and an outstandingly sensitive NMR technique I will systematically study the impact of halogen bond donor and acceptor sites, and of electronic and solvent effects on the strength of the interaction. The proposed method will quantify relative stability of a strategically-designed, cooperatively folding model system.

A second NMR technique will utilize paramagnetic effects and permit simultaneous characterization of bond strength and geometry of weak intermolecular complexes in solution. The technique will first be validated on small, organic model compounds and subsequently be transferred to weak, protein-ligand interactions. It will be exploited to gain an atomic level understanding of anaesthesia.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

GOETEBORGS UNIVERSITET
EU contribution
€ 1 495 629,60
Address
VASAPARKEN
405 30 Goeteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0