Objective
Wind turbines and aeronautic are sectors where Europe is leading the world class competition. To guarantee this competitiveness, their productivity has to be improved. The adoption of an automation strategy is a key factor to increase productivity. In the wind turbine manufacturing, the assembly is one of the core processes. Most of these assembly operations are manual which has the quality of being the most flexible way to do the work. The main objective for COSMOS is the design/development/implementation of a control system for factory management with a flexible, modular and evolvable automation approach which will permit to increase the assembly factory productivity by 20% without losing flexibility, focused on wind turbine assembly process although the solution will be suitable for other sectors. Cost models will be defined to assist in establishing the economically optimum factory’s configuration and automation level. The achievement of the main objective will be obtained by fulfilling the following technical objectives: -Create a factory organisation conception based on intelligent factory units for facilitating the self-adaptation to production changes under a flexible and modular automation configuration basis. -Develop the distributed control system architecture according to such factory organisation. -Develop the service layer infrastructure between control system and equipment involved in production. COSMOS system features: -Autonomous behaviour of the factory units. -Multilayer decentralised control. The control will work in three interconnected levels. -Interoperable connectivity with factory units’ equipment/devices. -Local intelligence (self-adaptation to different parts conditions without human intervention). -Collaboration among equipment/devices to complete specific tasks. COSMOS will be implemented as a pilot installation for the assembly of wind turbines nacelles (most critical and added value part).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systems
- social sciencessociologyindustrial relationsautomation
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
You need to log in or register to use this function
Programme(s)
Call for proposal
FP7-NMP-2009-SMALL-3
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
20009 San Sebastian Guipuzcoa
Spain