Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Development and Neuromodulation of Intrinsic Cortical Activity

Objective

We propose to study intrinsic cortical network activity in-vitro. It is already known that the cerebral cortex, both in-vivo and in-vitro, produces spontaneous patterns of electrical activity independently of extrinsic inputs. These consist of network-induced prolonged depolarizations & action potentials (UP states), alternating with periods of synaptic withdrawal, membrane hyperpolarization and cessation of firing (DOWN states). It is precisely on such endogenous activity that all external inputs act, namely sensory information and/or neuromodulation. It is also increasingly evident that certain mental disorders are associated, not with specific brain lesions or cellular degeneration, but with abnormal cortical activity. Hence, this endogenous activity is crucial for our understanding of cortical information processing. To present, the generation and development of intrinsic discharge patterns and their interaction with external inputs are poorly understood. Here we propose to use brain slices to study the ontogeny and susceptibility to neuromodulation of spontaneous slow oscillations (UP/DOWN states) and persistent activity (evoked UP states) of different cortical regions. We will first compare the development of spontaneous slow oscillations in distinct cortical areas, from prenatal ages to adulthood. This is a novel and essential first step towards understanding the functional differentiation of the cortex, and identifying the possible onset of abnormal network activity during disease. We will then examine how neuromodulators, that gate distinct information processing brain states, affect spontaneous and evoked UP states in thalamocortical slices from adult animals. These data will help clarify how behaviourally distinct brain states affect intrinsic cortical dynamics. This grant will enable the applicant, a worldwide expert in this in-vitro model, to bring the know-how to Europe and continue his training and research in the European Community.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

IDRYMA IATROVIOLOGIKON EREUNON AKADEMIAS ATHINON
EU contribution
€ 100 000,00
Address
SORANOU EFESIOU 4
115 27 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0