Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Towards long-lived hyperpolarized spin-state

Objective

Currently the relatively low sensitivity of magnetic resonance is a main obstacle, which prevents the Magnetic Resonance Imaging (MRI) detection of molecules with low physiological concentration, as for example molecules related to neurodegenerative diseases like Alzheimer or Parkinson. Due to this there are currently worldwide attempts to increase the sensitivity by hyper-polarization techniques. One of these attempts is the usage of the Para Hydrogen Induced Polarization (PHIP) technique, which can cause four orders of magnitude of increase in the sensitivity of MRI. Although the basic feasibility of this approach has been demonstrated the relatively fast decay of the increased signal prevents until now the in-vivo application. In our project we want to solve this problem and develop novel concepts for slowing down the relaxation processes of the created hyperpolarized spin-state. If this problem is solved, hyperpolarized contrast agents with long signal persistence may open new pathways for scientific or commercial application of the PHIP technique in human MRI. My project concentrates on how the molecular structure and the physical state of the sample affect the life-time of the hyperpolarized state. In particular the question is raised to what extend the isotopical composition of the molecule affects the relaxation time of the hyperpolarized spin-state in solids and liquids by studying PHIP-hyperpolarization of fully or partly deuterated molecular models and whether it is possible to conserve the hyperpolarization by freezing the reactant solution. To answers these questions a detailed investigation of the relevant relaxation mechanisms operating in liquid and solid hyperpolarized samples are planned. The knowledge of these mechanisms can be employed as a guideline for designing long life-time target molecules for the hydrogenation which are applicable as magnetic markers in MRI.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

TECHNISCHE UNIVERSITAT DARMSTADT
EU contribution
€ 81 830,50
Address
KAROLINENPLATZ 5
64289 DARMSTADT
Germany

See on map

Region
Hessen Darmstadt Darmstadt, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0