Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Fluid Mechanics of Flagellar Propulsion

Objective

The locomotion of microorganisms in fluids is a theme of major importance in biology. It affects many processes such as mammalian reproduction, the marine life ecosystem, and the dynamics of bacterial infection. Locomotion is typically achieved by the periodic deformation of flagella (short and flexible organelles) that drive the fluid motion around the microorganisms, and generate propulsive forces. The shape of the flagella is, in turn, affected by the fluid dynamics forces generated by the organisms. The understanding of this complex fluid-structure interaction calls for a multidisciplinary approach, at the intersection of physics, mechanics, biology and applied mathematics. The present research and training project will be dedicated to some open fundamental issues of flagellar propulsion. One key point of its methodology is the combined experimental and theoretical approach. A macroscopic experiment will be built with the aim of mimicking the motion of a bacterial flagellum. By immersing a rotating flexible filament in a highly viscous fluid, the fluid mechanics is identical to what occurs at the microorganism scale but with the advantages of a perfectly controllable experiment. Several important phenomena will be studied independently such as the motion in a viscoelastic fluid, the interaction of several flagella, the mixing properties of the fluid dynamics, and the effect of intrinsic curvature on the propulsion efficiency. In parallel, theoretical models will be developed with the aim of providing deeper insight into the physical mechanisms by extending the regimes of the actual models (resistive force, and slender-body models). This proposal is related to important Health issues such as bacterial infection, sperm motility and the design of micro-robots able to perform minimally invasive surgery and targeted drug delivery. This project will therefore contribute to European competitiveness on two major themes of the FP7 Programme: Health and Nanosciences.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

UNIVERSITE D'AIX MARSEILLE
EU contribution
€ 181 726,57
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0