Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Design of Hybrid Nanostructured Bio-photocatalyst for Their Application in Bio-photoelectrochemical Hydrogen Production

Objective

The need to establish renewable energy supplies, both as a strategic economic requirement and as a wedge against climate change is leading organizations to invest in research on capturing solar energy. There is particular interest in artificial photosynthesis, using photons to produce electricity or fuels using a man-made device rather than a plant. In natural in-vitro system for hydrogen production, complex molecule i.e. chlorophyll harvest solar energy and subsequent electronic excitation leads to ejection of electrons from the chlorophyll dimer and then passed on to various electron-transferring mediators. This electron donor system may be replaced with the visible light sensitized inorganic photocatalyst. At present, the photocatalysts that have been synthesized and tested fall far short of the efficiency and catalytic rates of enzymes that catalyze either H2 production (hydrogenases) or O2 production (the Mn cofactor of Photosystem II). Therefore the enzymes themselves represent important benchmarks for gauging the possibilities for building water-splitting photocatalysts from inorganic and organic photophysical materials. In such devices enzyme molecules are linked to the semiconductor surface in such a way that they are stable and electrocatalytically active. Therefore, the proposed project is focused on the fabrication of chalcogenide semiconducting nanostructures (mainly nanotubes / nanowire / gyroid having few nm thick wall) and grafting of redox proteins onto these nanostructures for their subsequent exploitation in photoelectrochemical hydrogen production. The exploration of the photoelectrochemistry involved and properties of enzymes which govern the hydrogen generation will also be undertaken. In addition, various other parameters such as the electrolyte pH, nature of sacrificial reagents, combination of chalcogenide photocatalyst- redox proteins (eg. Hydrogenase etc.) will be optimized to maximize solar hydrogen production efficiency.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 181 103,20
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0