Objective
The need to establish renewable energy supplies, both as a strategic economic requirement and as a wedge against climate change is leading organizations to invest in research on capturing solar energy. There is particular interest in artificial photosynthesis, using photons to produce electricity or fuels using a man-made device rather than a plant. In natural in-vitro system for hydrogen production, complex molecule i.e. chlorophyll harvest solar energy and subsequent electronic excitation leads to ejection of electrons from the chlorophyll dimer and then passed on to various electron-transferring mediators. This electron donor system may be replaced with the visible light sensitized inorganic photocatalyst. At present, the photocatalysts that have been synthesized and tested fall far short of the efficiency and catalytic rates of enzymes that catalyze either H2 production (hydrogenases) or O2 production (the Mn cofactor of Photosystem II). Therefore the enzymes themselves represent important benchmarks for gauging the possibilities for building water-splitting photocatalysts from inorganic and organic photophysical materials. In such devices enzyme molecules are linked to the semiconductor surface in such a way that they are stable and electrocatalytically active. Therefore, the proposed project is focused on the fabrication of chalcogenide semiconducting nanostructures (mainly nanotubes / nanowire / gyroid having few nm thick wall) and grafting of redox proteins onto these nanostructures for their subsequent exploitation in photoelectrochemical hydrogen production. The exploration of the photoelectrochemistry involved and properties of enzymes which govern the hydrogen generation will also be undertaken. In addition, various other parameters such as the electrolyte pH, nature of sacrificial reagents, combination of chalcogenide photocatalyst- redox proteins (eg. Hydrogenase etc.) will be optimized to maximize solar hydrogen production efficiency.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- natural sciences chemical sciences catalysis photocatalysis
- social sciences economics and business economics production economics
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2009-IIF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.