Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Investigating the role of pre-synaptic HCN1 channels in regulating cortical synaptic transmission and plasticity

Objective

Voltage-gated ion channels are important determinants of neuronal excitability. The Hyperpolarization-activated Cation Non-selective (HCN) channels are voltage-gated ion channels that open with hyperpolarization at subthreshold potentials. Four subtypes (HCN1-4) have been cloned. There is considerable interest in HCN1 channels as they have been shown to have roles in physiological processes such as learning and memory as well as pathophysiological conditions such as epilepsy. Many studies have shown that they are highly localised to hippocampal and cortical cell pyramidal cell dendrites. Interestingly, emerging immunohistochemical evidence suggests that they may also be present in axons and synaptic terminals. In support of this, our recent work shows that excitatory synaptic transmission is significantly enhanced in the entorhinal cortex (EC) in HCN1 null mice, suggesting that HCN1 channels may play a role in regulating neurotransmitter release. In the proposed work, we wish to test the hypothesis that HCN1 channels exist at glutamatergic synaptic terminals in the EC, where they regulate synaptic transmission. We also wish to investigate the cellular mechanisms by which pre-synaptic HCN1 channels may influence synaptic release. Finally, we wish to explore the physiological function of these pre-synaptic HCN1 channels. To address these questions, we will use a multi-disciplinary approach involving conventional electrophysiology, state-of-the art multi-photon microscopy imaging and electron microscopy coupled with transgenic mice and pharmacology. The results produced will have significant ramifications not only in the field of ion channels, particularly HCN channels, and neuron excitability but also for understanding the factors involved in controlling neurotransmission, synaptic strength and ultimately neural network excitability.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091118
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY COLLEGE LONDON
EU contribution
€ 1 400 547,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0