Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Lipschitz-based Optimization of Singular Values with Applications to Dynamical Systems

Objective

This project mainly concerns the numerical solution of singular value optimization problems. In the literature such problems arise in the robust control of linear dynamical systems, and in numerical linear algebra when sensitivity of numerical problems is considered. In a singular value optimization problem a prespecified singular value (e.g. the smallest, the largest) is sought to be minimized or maximized over a space of parametrized matrices. The inherent difficulty in the numerical solution of such problems is the non-convex and non-smooth nature of singular values. The traditional smooth optimization techniques such as Newton's method may not converge at all and, even if they converge, they converge only to a locally optimal point. The three major problems that will be tackled in this project are described below.

(1) The Project Coordinator (PC) aims to introduce a unified optimization algorithm exploiting the Lipschitzness of singular values and their derivatives. The algorithm will be meant for large-scale problems with many unknowns. The rate of convergence and backward error of the algorithm will be analyzed.

(2) Further applications of singular value optimization problems to dynamical systems will also be explored. Specifically the PC will investigate the applicability of singular value optimization in the context of model reduction of state-space representations of linear dynamical systems.

(3) From a theoretical point of view the available numerical techniques for singular value optimization problems can also shed light on the geometric properties of the pseudospectrum. The epsln-pseudospectrum of a matrix A is the set consisting of eigenvalues of all matrices within an epsln neighborhood of A. The PC hopes to prove various conjectures regarding the coalescence of the components of the pseudospectra.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

KOC UNIVERSITY
EU contribution
€ 100 000,00
Address
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Türkiye

See on map

Region
İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0