Skip to main content
An official website of the European UnionAn official EU website
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Understanding epigenetic mechanisms of complex genome editing in eukaryotes

Objective

The scientific goal of this proposal is to contribute to our understanding of RNA-mediated epigenetic mechanisms of genome regulation in eukaryotes. Choosing ciliated protozoa as model organisms gives a wonderful opportunity to study the incredibly complex epigenetic mechanism of programming large-scale developmental rearrangements of the genome. This involves extensive rearrangements of the germline DNA, including elimination of up to 95% of the genome. The massive DNA rearrangement makes ciliates the perfect model organism to study this aspect of germline-soma differentiation. This process is proposed to be regulated by an RNA-mediated homology-dependent comparison of the germline and somatic genomes. Ciliate’s genomic subtraction is one of the most fascinating examples of the use of RNA-mediated epigenetic regulation, and of a specialized RNA interference pathway, to convey non-Mendelian inheritance in eukaryotes. The ‘genome scanning’ model raises many interesting questions, which are also relevant to other RNA-mediated regulation systems. One of the most intriguing is a ‘thermodynamic’ problem: the model assumes that a very complex population of small RNAs representing the entire germline genome can be compared to longer transcripts representing the entire rearranged maternal genome, resulting in the efficient selection of germline-specific scnRNAs, which are able to target DNA deletions in the developing nucleus. How is it possible that the truly enormous number of pairing interactions implied can occur in such a short time, just a few hours? RNA-RNA pairing interactions would probably have to be assisted by a dedicated molecular machinery. This proposal focuses on characterizing proteins and RNAs that can orchestrate the massive genome rearrangements in ciliates.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Call for proposal

ERC-2010-StG_20091118
See other projects for this call

Host institution

UNIVERSITAET BERN
EU contribution
€ 1 500 000,00
Address
HOCHSCHULSTRASSE 6
3012 Bern
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Bern / Berne
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Beneficiaries (1)

My booklet 0 0