Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Modelling latent causes in molecular networks

Objective

In systems biology, we aim at deriving gene-regulatory or signaling models based on multivariate readouts, thereby generating predictions for novel experiments. However any model only approximates reality, leaving out details or other types of regulation. Here I ask why a given model fails to predict a set of observations with acceptable accuracy and how to refine the model using this experimental knowledge. This resembles a question from signal processing, namely the blind identification of hidden (latent) variables in a mixing model. Many, powerful methods have been proposed to answer it. However, they have not been extended to dynamical systems due to the involved strong nonlinearities.
I propose to infer additional upstream species in a given model, denoted as latent causes, that improve the prediction and at the same time are subject to the model dynamics. Multiple causes are estimated using statistical assumptions such as minimum mutual information. The model estimation will be performed within a Bayesian framework. This will allow for the efficient but crucial inclusion of prior biological information. The method will be applied to infer a differentiation model describing lineage segregation of embryonic stem (ES) cells to endo- and mesoderm. Here, latent causes are known to be transcription factors and microRNAs, but also small molecules/drugs. Identified off-target effects of these causes will be validated in collaboration with experimental partners.
This study will establish links between information-theoretic signal processing and dynamical systems. Its application to a detailed ES cell model will foster our understanding of differentiation and may ultimately contribute to the development of more efficient differentiation protocols for cell replacement therapy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
EU contribution
€ 1 238 590,00
Address
INGOLSTADTER LANDSTRASSE 1
85764 Neuherberg
Germany

See on map

Region
Bayern Oberbayern München, Landkreis
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0