Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Innovative Manufacturing of complex Ti sheet components

Objective

The INMA project aims at developing an intelligent knowledge-based (KB) flexible manufacturing technology for titanium shaping that will lead to drastically reduce current aircraft development costs incurred by the fabrication of complex titanium sheet components with a minimal environmental impact. In particular, this project aims at strengthening European aircraft industry competitiveness, by transforming the current non-flexible and cost intensive forming processes into a rapid and agile manufacturing process. This brand new technology, based on Asymmetric incremental sheet forming (AISF), will transform the way many titanium sheet aeronautical components such as after pylon fairings, fan blades, exhaust ducts or air collectors are manufactured today. The innovative, cost-efficient and ecological forming technology to shape complex geometries in titanium that will contribute to strengthen the European aircraft industry competitiveness meeting society’s needs.
Currently, aircraft industry uses complicated and cost intensive forming processes to shape complex Ti sheet components, such as deep drawing, hot forming, super plastic forming (SPF) and hydroforming. In some cases parts are even obtained by hand working. These techniques show severe drawbacks which include high costs, long industrialisation phases and high energy consumption rates. On the contrary, main features of the innovative AISF technology to be developed will be an increased flexibility, cost reduction, minimised energy consumption and a speed up in the industrialisation phase.
The major impacts of the results obtained in the INMA project will be:
*Cost incurred by dedicated tooling will be reduced in a 80%
*The component lead times will decrease in a 90%
*Buy-to-fly ratios will be up to a 20% lower
The INMA Consortium is integrated by 2 end-users, 1 equipment provider, 4 research organisations, 3 universities and the EASN association. Participation of industrial partners who will directly exploit the project results will guarantee the impact of the project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-AAT-2010-RTD-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

FUNDACION TECNALIA RESEARCH & INNOVATION
EU contribution
€ 681 350,00
Address
PARQUE CIENTIFICO Y TECNOLOGICO DE BIZKAIA, ASTONDO BIDEA, EDIFICIO 700
48160 DERIO BIZKAIA
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

My booklet 0 0