Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Understanding Designing and Analyzing Computational Cameras

Objectif

Computational cameras go beyond 2D images and allow the extraction of more dimensions from the visual world such as depth, multiple viewpoints and multiple illumination conditions. They also allow us to overcome some of the traditional photography challenges such as defocus blur, motion blur, noise and resolution. The increasing variety of computational cameras is raising the need for a meaningful comparison across camera types. We would like to understand which cameras are better for specific tasks, which aspects of a camera make it better than others and what is the best performance we can hope to achieve.

Our 2008 paper introduced a general framework to address the design and analysis of computational cameras. A camera is modeled as a linear projection in ray space. Decoding the camera data then deals with inverting the linear projection. Since the number of sensor measurements is usually much smaller than the number of rays, the inversion must be treated as a Bayesian inference problem accounting for prior knowledge on the world.

Despite significant progress which has been made in the recent years, the space of computational cameras is still far from being understood.
Computational camera analysis raises the following research challenges: 1) What is a good way to model prior knowledge on ray space? 2) Seeking efficient inference algorithms and robust ways to decode the world from the camera measurements. 3) Evaluating the expected reconstruction accuracy of a given camera. 4) Using the expected reconstruction performance for evaluating and comparing camera types. 5) What is the best camera? Can we derive upper bounds on the optimal performance?

We propose research on all aspects of computational camera design and analysis. We propose new prior models which will significantly simplify the inference and evaluation tasks. We also propose new ways to bound and evaluate computational cameras with existing priors.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2010-StG_20091028
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution de l’UE
€ 756 845,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0