Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Dimension Phenomena and Curvature Equations in Carnot Groups

Objective

The core of this project can be shortly (and roughly) described as project in Geometric Metric Theory and curvature equations in non-Euclidean structures. It is worthwhile from the very beginning to state clearly that, when we mention non-Euclidean structures, we refer to metric structures that are not Euclidean at any scale. Thus, the model we have in mind are not Riemannian manifolds, but better the so-called sub-Riemannian manifolds and fractals, or even fractals in sub-Riemannian spaces. In the last few years, sub-Riemannian structures have been largely studied in several respects, such as differential geometry, geometric measure theory, subelliptic differential equations, complex variables, optimal control theory, mathematical models in neurosciences, non-holonomic mechanics, robotics. Among all sub-Riemannian structures, a prominent position is taken by the so-called Carnot groups (simply connected Lie groups G with stratified nilpotent algebra), which play versus sub Riemannian spaces the role played by Euclidean spaces (considered as tangent spaces) versus Riemannian manifolds. The notion of dimension is crucial in our approach: the non-Euclidean character of the structures we are interested to study hides in the gap between the topological dimension of a group G and its metric dimension. Isoperimetric inequalities, analysis on fractal sets, quasiconformal and quasiregular maps are a typical manifestations of the metric dimension versus the topological dimension. In addition, dimension phenomena appear in a crucial way when dealing with intrinsic curvature in submanifolds of Carnot groups and in the curvature equations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IRSES
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRSES - International research staff exchange scheme (IRSES)

Coordinator

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
EU contribution
€ 43 200,00
Address
VIA ZAMBONI 33
40126 Bologna
Italy

See on map

Region
Nord-Est Emilia-Romagna Bologna
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (2)

My booklet 0 0