Objective
One of the major challenges of this century is the provision of safe drinking water for a growing population. The shortage in water resources in arid areas requires the availability of more efficient and cheaper drinking water production processes. For groundwater, it is often sufficient to aerate and disinfect to produce drinking water. However, in large parts of the world the use of groundwater from aquifers is not possible due to excessive use and global climate change that allow penetration of salt sea water into the aquifers. Population growth, not surprisingly, leads to more pollution of aquifers rendering the water quality unsuitable for drinking water purposes without excessive treatment. In contrast, there are always large quantities of water vapor present in air. The objective within CapWa is produce a commercially available membrane modular system suitable for industrial applications within 3-4 years. The produced demin water from this system should be competitive with existing demin water technologies. The starting point will be the water vapour selective composite membranes that are developed in the proof of principle project. At the same time fundamental research will also be done on other alternative water selecting coatings. For both of these membrane paths the upscale from lab to industrial scale membrane production will be developed in CapWa. In CapWa the modular membrane system will also be developed and tested in the flue gas duct of a gas and coal-fired power plant, a cooling tower (or geothermal well) and in a paper or board mill. To achieve this goal the selective membranes must be thermal/chemically stable under the existing environmental conditions (50-150 °C) and resistant to fouling. To be competitive with existing demin production lines, the construction of the end system must be efficient and user friendly.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringwater treatment processesdrinking water treatment processes
- natural sciencesearth and related environmental scienceshydrology
- engineering and technologymaterials engineeringcoating and films
- natural sciencesearth and related environmental sciencesenvironmental sciencespollution
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
FP7-NMP-2009-SMALL-3
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
6812 AR ARNHEM
Netherlands