Objective
The objective of this research project is the development and experimental validation of a new generation of mathematical and computational methods allowing the solution of practical fluid-solid structure interaction (FSSI) problems of interest for predictive safety of civil constructions to water-induced hazards. These constructions include: buildings, bridges, harbours, dams, dykes, breakwaters, and similar infrastructures in water hazard scenarios such as flooding, large sea waves, tsunamis and water spills due to the collapse of dams, dykes and reservoirs, among others.
The specific research aims of the SAFECON project are: a) development, integration and validation of a next generation of predictive methods based on new mathematical models and efficient computational procedures integrating a new particle-based method, the discrete element method and the finite element method for estimating accurately the dynamics of three dimensional (3D) free surface multiscale heterogeneous flows and their interaction with constructions accounting for FSSI effects. b) Extension and validation of the new particle-discrete-finite element method (PDFEM) for solving 3D FSSI problems allowing for failure mechanisms in the structure and the soil, and c) application of the new computational method (the PDFEM) for predicting the risk of failure in selected civil constructions under the effect of water forces.
The ultimate outputs of SAFECON will be: a) new mathematical models and numerical techniques for analysis of multiscale free surface heterogeneous flows and their interaction with soils and structures and b) new validated computational methods and software for enhanced design and risk assessment of engineering constructions to protect human populations and civil infrastructure in presence of water-induced hazards.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencescomputer and information sciencessoftware
- natural sciencescomputer and information sciencescomputational science
- natural sciencesmathematicsapplied mathematicsmathematical model
You need to log in or register to use this function
Call for proposal
ERC-2010-AdG_20100224
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
08034 Barcelona
Spain