Project description
Cognitive Systems and Robotics
The EMICAB consortium takes a comprehensive approach to the engineering of artificial cognitive systems. The objective is to integrate smart body mechanics in intelligent planning and control of motor behaviour, accounting equally for problems in neuroscience (multi-sensory integration, internal body models, intelligent action planning) and technology (smart body mechanics, distributed embodied sensors and brain-like controllers). The overall technological goal is a dexterous hexapod robot that exploits its bodily resources for cognitive functions.
The EMICAB consortium takes a holistic approach to the engineering of artificial cognitive systems. Our goal is to integrate smart body mechanics in intelligent planning and control of motor behaviour. To achieve this goal the consortium accounts equally for problems in neuroscience (e.g. multi-sensory integration, internal body models, intelligent action planning) and technology (smart body mechanics, distributed embodied sensors and brain-like controllers). Our approach starts with a strongly sensorised bionic body with redundant whole-body kinematics and then designs the technological infrastructure such that cognitive mechansims emerge from distributed sensorimotor intelligence. The concept is based on neuroscience research on insects whose motor dexterity, adaptiveness and pre-rational abilities in learning and memory rival those of lower mammals: stick insects orchestrate a wide range of dexterous motor behaviours and flies can maintain object locations in short-term memory during navigation tasks, just to mention paradigms that are studied by UNIBI and JGUM. The partners UNICT and SDU will devise bio-inspired models and, in turn, guide ongoing experimental research in order to achieve the overall technological goal: a dexterous hexapod robot that exploits its bodily resources for cognitive functions. Two levels of analysis and modelling will be accounted for: the smart brain that captures various aspects of motion intelligence (motor learning, context-dependent actions, multi-sensory integration) and the smart body equipped with distributed proprioceptors and muscle-like compliance, allowing for novel, highly adaptive, neurobionic control strategies. The EMICAB robot will draw from its complex body features and learn by use of a manipulable internal body model. This will be monitored by an ambitious set of benchmarking scenarios. We expect mutual benefit for applied research on autonomous mobile robots and for basic research in neuroscience.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology cognitive neuroscience
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences biological sciences zoology entomology
- natural sciences biological sciences zoology mammalogy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2009-6
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
33615 Bielefeld
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.