Project description
Cognitive Systems and Robotics
The CoCoRo project aims at developing a swarm of autonomous underwater vehicles (AUVs) that are able to interact with each other and which can balance tasks such as ecological monitoring, searching, maintaining, exploring and harvesting resources in underwater habitats. The swarm will maintain swarm integrity under conditions of dynamically changing environments. This will be achieved by letting the AUVs interact with each other and exchange information, resulting in a cognitive system that is aware of its environment, of local individual goals and threats and of global swarm-level goals and threats. This can be exploited for improving the robustness, flexibility and efficiency of other technical applications in the field of ICT.
This ambitious project aims at creating a swarm of interacting, cognitive, autonomous robots. We will develop a swarm of autonomous underwater vehicles (AUVs) that are able to interact with each other and which can balance tasks (interactions between/within swarms). These tasks are: ecological monitoring, searching, maintaining, exploring and harvesting resources in underwater habitats. The swarm will maintain swarm integrity under conditions of dynamically changing environments and will therefore require robustness and flexibility. This will be achieved by letting the AUVs interact with each other and exchange information, resulting in a cognitive system that is aware of its environment, of local individual goals and threats and of global swarm-level goals and threats. Our consortium consists of both, biological and technical institutions and is therefore optimally qualified to achieve this goal.By a combination of locally acting and globally acting self-organizing mechanisms, information from the global level flows into the local level and influences the behaviour of individual AUVs. Such a cognitive-based scheme creates a very fast reaction of the whole collective system when optimizing the global performance. As shown by natural swimming fish swarms, such mechanisms are also flexible and scalable. The usage of cognition-generating algorithms can even allow robotic swarms to mimic each other's behaviour and to learn from each other adequate reactions to environmental changes. In addition, we plan to investigate the emergence of artificial collective pre-consciousness, which leads to self-identification and further improvement of collective performance. In this way we explore several general principles of swarm-level cognition and can assess their importance in real-world applications. This can be exploited for improving the robustness, flexibility and efficiency of other technical applications in the field of ICT.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics cognitive robots
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2009-6
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
8010 GRAZ
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.