Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Charge separation, lightning and radio emission in low-mass objects

Objective

This project will investigate the hypothesis that dust clouds are a major source of charge separation and discharge processes in very low mass, extrasolar objects like M-dwarfs, Brown-Dwarfs, and planets. The aim is to model charging, dust formation and sedimentation in dusty media to understand how the atmospheric ionisation mechanisms change at the border from stars to planets in the M-dwarf--Brown-Dwarf transition region where radio emission starst to exceed X-ray emission, and to investigate the physics and the occurrence of intra-cloud lightning outside our solar system. Lightning is suggested to have triggered the occurrence of life on Earth.

Dusty media are generally very common on Earth and in space, for example in volcano plumes that influence the local climate on Earth, on Mars where it blocks Mars-Rover's wheels, in dust-clouds in Brown Dwarfs and planets which determine their chemistry and their detectability, or in planet-forming disks. All have in common that dust of mixed composition is abundant in a turbulent environment in a variety of sizes. This project will perform a characterisation of dusty astrophysical plasma, systemically study charge separation processes and draw comparison to known scenarios in volcanos and Martian plasmas. The project determines stellar parameter and dust cloud characteristics (e.g. cloud height) for which dust cloud charging becomes important, and under which conditions lightning can occur. A charge conservation model will be coupled to a non-equilibrium chemistry to search for discharge-related molecules and for pre-biotic molecules that might occur during lightning. Applications to standard model atmospheres will be carried out to study the influence on the spectral energy distribution and the object's albedo. The long-term aim of this project is to solve the dust and charge conservation equations together with the magnetic field equations in order to study the development of radio emission in low-mass objects.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
EU contribution
€ 1 500 000,00
Address
NORTH STREET 66 COLLEGE GATE
KY16 9AJ St Andrews
United Kingdom

See on map

Region
Scotland Eastern Scotland Clackmannanshire and Fife
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0