Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Photocatalytic and membrane technology process for olive oil mill waste water treatment

Objective

Presently available methods for the treatment of olive mill waste water are not acceptable from the environmental point of view (evaporation, discharge) or not suitable from the economic aspect (membrane treatments) costing 10-20% of revenues from oil selling. PHOTOMEM proposes a reliable and affordable technology solution to treat the waste water, applying a novel technical solution based on degradation of organic pollutants through photocatalysis. Dispersed ferromagnetic titania nanoparticles with a magnetic core will be used in a photocatalytic reactor and recovered through a magnetic filter. A subsequent membrane filtration step will be used to achieve the COD limit for reuse of the recycled 85% of wastewater as purified water to a grade compatible with irrigation use and/or dischargeable at low cost in the civil municipal sewer system. The combination of the 2 processes will grant strongly improved performances: double membrane lifetime, 50% cost saving for the operation, 3 times more compact plant, much faster operation. The recovery of polyphenols, a family of added value compounds (hydroxytyrosol) present in the wastewater will be performed to make the process more profitable. The tangible outcomes of the PHOTOMEM project will be: 1. Production process for ferromagnetic photocatalytic titania nanoparticles, 2. Economical wastewater treatment for OMWW, 3. PHOTOMEM pilot plant of 1 m3/day capacity to validate the treatment and evaluate scale-up. The 2 SMEs (ECS, BIOAZUL) specialised in waste water treatment plants design and construction will sell the PHOTOMEM plant in 2 different countries (Italy, Spain). The producer of custom-made ceramic powders and nanostructured materials for industrial use (MT) will produce the ferromagnetic photocatalytic titania nanoparticles. The end-user (FRA) will apply the technology in its production site. The market potential for such a solution would be of the order of several tens of millions of Euro.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2010-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME - Research for SMEs

Coordinator

ECOSYSTEMS srl
EU contribution
€ 366 642,00
Address
VIA UDINE 14
00040 POMEZIA RM
Italy

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0