Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Ab-initio adiabatic-connection curves for density-functional analysis and construction

Objective

Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-AdG_20100224
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITETET I OSLO
EU contribution
€ 2 017 932,00
Address
PROBLEMVEIEN 5-7
0313 Oslo
Norway

See on map

Region
Norge Oslo og Viken Oslo
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0