Objective
Nature not only provides inspiration for designing new materials but also teaches us how to use interparticle and external forces to structure and assemble these building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosome represent a striking example of such an accomplishment where a simple living organism precisely tune the properties of inorganics that in turn guide the cell movement thereby providing an energetic advantage vs. the non-magnetotactic counterparts.
In this project, we will develop a bio-inspired research based on magnetotactic bacteria. We will combine the recent developments of nanoscale engineering in the chemical science and the latest advances in molecular biology to create a novel methodology enabling first, the understanding of the control of biological determinants over single inorganic building blocks at the nanoscale and over highly-organized hierarchical structures, and second, the use of these biomacromolecules to construct new functional materials.
We will use phage display to genetically select peptides specifically binding to magnetite and look for homology within the available genomes of the different strains of magnetotactic bacteria in order to detect promising biological determinants. We will screen the identified compounds by our in-house developed high-throughput technique based on force microscopy. On the one hand, the effect of the high potential biological determinant on the properties of magnetic nanoparticles will be tested under physiological conditions in biomimetic reactor. On the other hand, we will use the knowledge gained from the binding capacities of the peptides to functionalize magnetite nanoparticles and assemble them in order to eventually form a swimming nanorobots that can be directed by an external magnetic field while transporting beads.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesmicrobiologybacteriology
- natural sciencesbiological sciencesmicrobiologyvirology
- natural sciencesbiological sciencesbiochemistrybiomolecules
- natural scienceschemical sciences
- natural sciencesbiological sciencesmolecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2010-StG_20091028
See other projects for this call
Funding Scheme
ERC-SG - ERC Starting GrantHost institution
80539 Munchen
Germany