Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Composing Learning for Artificial Cognitive Systems

Project description


Cognitive Systems and Robotics

One of the aspirations of machine learning is to develop intelligent systems that can address a wide variety of control problems of many different types. Currently, the technology used to specify, solve and analyse one control problem typically cannot be reused on a different problem. The purpose of CompLACS is to develop a unified toolkit that will incorporate the most successful approaches to control problems within a single framework, including bandit problems, Markov Decision Processes (MDPs), Partially Observable MDPs (POMDPs), continuous stochastic control, and multi-agent systems. The toolkit will also provide a generic interface to specifying problems and analysing performance, by mapping intuitive, human-understandable goals into machine-understandable objectives, and by mapping algorithm performance and get back into human-understandable terms.

 

One of the aspirations of machine learning is to develop intelligent systems that can address a wide variety of control problems of many different types. However, although the community has developed successful technologies for many individual problems, these technologies have not previously been integrated into a unified framework. As a result, the technology used to specify, solve and analyse one control problem typically cannot be reused on a different problem. The community has fragmented into a diverse set of specialists with particular solutions to particular problems. The purpose of this project is to develop a unified toolkit for intelligent control in many different problem areas. This toolkit will incorporate many of the most successful approaches to a variety of important control problems within a single framework, including bandit problems, Markov Decision Processes (MDPs), Partially Observable MDPs (POMDPs), continuous stochastic control, and multi-agent systems. In addition, the toolkit will provide methods for the automatic construction of representations and capabilities, which can then be applied to any of these problem types. Finally, the toolkit will provide a generic interface to specifying problems and analysing performance, by mapping intuitive, human-understandable goals into machine-understandable objectives, and by mapping algorithm performance and regret back into human-understandable terms.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-6
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

UNIVERSITY COLLEGE LONDON
EU contribution
€ 1 160 410,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0