Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Prediction and control of porosity in laser welding of non-ferrous metals

Objective

Laser welding is a robust process for producing full penetration welds in steels. Welds in non-ferrous materials (such as Al and Ti), achieving acceptable weld quality is less straightforward. Of particular concern is porosity formation in the deep penetration. Achieving low levels of porosity in a reproducible way is currently preventing acceptance of laser welding in the aerospace and to some extent, in the automotive industries, in spite of the economic and manufacturing benefits. The porosity problem in laser welds is well documented in published literature but it is often very difficult to compare the results. Recent developments in high brightness solid-state lasers such as Yb-fibre and Yb:YAG disc lasers increase the possibilities for laser welding in these fields. In comparison to the other lasers, the fibre laser represents a better beam quality, higher cost efficiency and more flexible integrated system with a promising future. There is very little results available using the latest high brightness lasers. There is a clear need for better understanding the beam-materials interactions when welding with these high brightness lasers.
The objective of this project is to develop technical solutions for achieving high quality (low porosity) laser welds and to establish guideline for using fibre laser welding in non-ferrous metals including aluminium and titanium.
The specific objectives are:
1. To carry out numerical modelling to simulate the interactions between the laser beam and molten metal
and to understand the formation of porosity in laser welds in non-ferrous metals;
2. To develop monitoring techniques for direct observing the weld pool behaviours in laser welding and
hybrid laser-MIG welding, using high speed camera;
3. To establish the characteristics of plume formations during laser welding and to develop techniques for
effective suppression of plumes in laser welding;
4. To produce recommendations for eliminating porosity in laser welded non-ferrous alloys

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIFR - International incoming fellowships (Return phase)

Coordinator

TSINGHUA UNIVERSITY
EU contribution
€ 15 000,00
Address
QING HUA YUAN
100084 BEIJING
China

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0