Objective
The project will demonstrate a new full ceramic SOFC cell with superior robustness as regards to sulphur tolerance, carbon deposition (coking) and re-oxidation (redox resistance). Such a cell mitigates three major failure mechanisms which today have to be addressed at the system level. Having a more robust cell will thus enable the system to be simplified, something of particular importance for small systems, e.g. for combined heat and power (CHP). The new ceramic based cell will be produced by integrating a new, very promising class of materials, strontium titanates, into existing, proven SOFC cell designs. Cost effective and up-scalable processes will be developed for the fabrication of supports and cells. In an iterative process the cell performance at defined tolerance levels will subsequently be improved by adjustments of the fabrication on full cell level according to identified failure mechanisms. Cells with matching performance but improved sulphur, coling and re-oxidation tolerance compared to state-of-the-art Ni-cermet materials will finally be demonstrated in a real system environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural scienceschemical sciencesinorganic chemistryalkaline earth metals
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generationcombined heat and power
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
You need to log in or register to use this function
Call for proposal
FCH-JU-2009-1
See other projects for this call
Coordinator
2800 Kongens Lyngby
Denmark