Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Out of Equilibrium Fluctuations in Confined Phase Transitions

Objective

This project aims at studying experimentally the out of equilibrium fluctuations
in strongly confined fluids. Three main problems will be analyzed :
a) The effects on the dynamics when the fluctuations are confined in a volume smaller than the spatial correlation length; b) The fluctuations of the injected and dissipated power in out of equilibrium in highly confined systems, where extreme events may produce
an instantaneous ''negative entropy production rate''. c) Are fluctuations a limiting factor for application ? Might they be useful ?
Our strategy is to enhance the role of fluctuations and correlations working close to the critical point of a second order phase transition. We will work at the critical point
of mixing of either a binary mixture of fluids or of polymer blends, whose microscopic time scales and correlation lengths are much longer than those of binary mixtures of simple fluids. The local measurements and the confinement will be realized using an original ultra low noise Atomic Force Microscopy (AFM) developed in our laboratory. This AFM will be used in association with a near field aperture free light scattering technique, local and global dielectric techniques and evanescent waves imaging. This experimental set up, measuring local and global variables, will give new insight to two other interesting phenomena that are present in the critical regions : the finite size effects (such as dimensional crossover and time dependent critical Casimir effect) and the relaxation towards equilibrium after a quench at the critical point. These two phenomena have been widely investigated both theoretically and numerically butonly a few experiments have tried to measure directly the local fluctuations of confined fluids. Due to the universal nature of phase transitions the results can be applied to many other systems in which measurements are more complicated.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-AdG_20100224
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 2 376 117,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0