Skip to main content
European Commission logo print header

Eukaryotic genomic origins, parasites, and the essential nature of mitochondria

Cel

Understanding the origin and evolution of eukaryotes, their genomes and organelles, are among the most important and exciting challenges facing biology. However, determining ancient gene origins tests methods and data to their limits, and it is unrealistic to expect progress to be easy. A comparative cross-disciplinary approach involving sophisticated phylogenetics allied with mathematical understanding, offers the best hope of obtaining robust hypotheses for gene and genomic origins. It is also necessary to look beyond the narrow focus of a few model organisms, and to thoughtfully embrace a wider selection of eukaryotic diversity. Over the past few years, my lab has studied the genomes and mitochondrial homologues (mitosomes and hydrogenosomes) of parasitic protozoa that represent significant health hazards in both the developed and developing world. These microbial eukaryotes will provide the model systems for investigations which aim to deliver major progress in understanding the importance of lateral gene transfer for eukaryotic genome origins and flux, for understanding how parasites exploit their host cells, and for identifying the essential functions of organelles related to mitochondria, which now appear to be vital components of all eukaryotic cells.

Zaproszenie do składania wniosków

ERC-2010-AdG_20100317
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

UNIVERSITY OF NEWCASTLE UPON TYNE
Wkład UE
€ 1 998 703,00
Adres
KINGS GATE
NE1 7RU Newcastle Upon Tyne
Zjednoczone Królestwo

Zobacz na mapie

Region
North East (England) Northumberland and Tyne and Wear Tyneside
Rodzaj działalności
Higher or Secondary Education Establishments
Kierownik naukowy
Thomas Martin Embley (Prof.)
Kontakt administracyjny
Fiona Airey (Mrs.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)